Finite volume methods for unidirectional dispersive wave models
نویسندگان
چکیده
We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves and their various interactions.
منابع مشابه
Finite volume schemes for dispersive wave propagation and runup
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to ...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملA splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model
The fully nonlinear and weakly dispersive Green–Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite difference splitting approach is then proposed, which could be adapted to many physical models that are dispersive corrections of hyperbolic system...
متن کاملA new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations
We introduce a new class of two-dimensional fully nonlinear and weakly dispersive Green-Naghdi equations over varying topography. These new Green-Naghdi systems share the same order of precision as the standard one but have a mathematical structure which makes them much more suitable for the numerical resolution, in particular in the demanding case of two dimensional surfaces. For these new mod...
متن کاملFinite Volume Methods for Nonlinear Elasticity in Heterogeneous Media
An approximate Riemann solver is developed for the equations of nonlinear elasticity in a heterogeneous medium, where each grid cell has an associated density and stress-strain relation. The nonlinear flux function is spatially varying and a wave decomposition of the flux difference across a cell interface is used to approximate the wave structure of the Riemann solution. This solver is used in...
متن کامل